Soft substrate up-regulates the interaction of STIM1 with store-operated Ca2+ channels that lead to normal epithelial cell apoptosis.
نویسندگان
چکیده
We have demonstrated that soft substrate induced apoptosis in polarized cells, but not in transformed cells by disturbance of Ca(2+) homeostasis. This study aims to further investigate the regulatory mechanisms underlying the disruption of Ca(2+)-signaling integrity in soft substrate-induced epithelial apoptosis. Soft substrate up-regulated the store-operated Ca(2+) (SOC) entry across the plasma membrane of normal cervical epithelial cells, which resulted in increased cytosolic Ca(2+) levels. Concomitantly, soft substrate induced the aggregation and translocation of stromal interacting molecule 1 (STIM1) toward the cell periphery to colocalize with Orai1, an essential pore subunit of SOC channel, detected by fluorescence resonance energy transfer approach and confocal image analyses. The disturbed Ca(2+) homeostasis resulted in the activation of mu-calpain, which cleaved alpha-spectrin, induced actin disorganization, and caused apoptosis. In contrast, soft substrate did not disturb Ca(2+) homeostasis or induce apoptosis in cervical cancer cells. Chelating extracellular Ca(2+) by EGTA and down-regulated SOC entry by small interfering RNA targeting STIM1 or inhibitors targeting Ca(2+)-binding site of calpain significantly inhibited soft substrate-induced activation of mu-calpain and epithelial cell apoptosis. Thus, soft substrate up-regulates the interaction of STIM1 with SOC channels, which results in the activation of mu-calpain and subsequently induces normal epithelial cell apoptosis.
منابع مشابه
Soft substrate upregulates the interaction of STIM1 with store-operated Ca channels that leads to normal epithelial cell apoptosis
We have demonstrated that soft substrate induced apoptosis in polarized cells, but not in transformed cells by disturbance of Ca homeostasis. This study aims to further investigate the regulatory mechanisms underlying the disruption of Ca-signaling integrity in soft substrate-induced epithelial apoptosis. Soft substrate upregulated the store-operated Ca (SOC) entry across the plasma membrane of...
متن کاملSTIM1 translocation to the plasma membrane enhances intestinal epithelial restitution by inducing TRPC1-mediated Ca2+ signaling after wounding.
Early epithelial restitution is an important repair modality in the gut mucosa and occurs as a consequence of epithelial cell migration. Canonical transient receptor potential-1 (TRPC1) functions as a store-operated Ca2+ channel (SOCs) in intestinal epithelial cells (IECs) and regulates intestinal restitution, but the exact upstream signals initiating TRPC1 activation after mucosal injury remai...
متن کاملKey Role for Store-Operated Ca2+ Channels in Activating Gene Expression in Human Airway Bronchial Epithelial Cells
Ca2+ entry into airway epithelia is important for activation of the NFAT family of transcription factors and expression of genes including epidermal growth factor that help orchestrate local inflammatory responses. However, the identity of epithelial Ca2+ channel that activates these transcriptional responses is unclear. In many other non-excitable cells, store-operated Ca2+ entry is a major ro...
متن کاملSTIM1 Phosphorylation at Y361 Recruits Orai1 to STIM1 Puncta and Induces Ca2+ Entry
Store-operated Ca2+ entry (SOCE) mediates the increase in intracellular calcium (Ca2+) in endothelial cells (ECs) that regulates several EC functions including tissue-fluid homeostasis. Stromal-interaction molecule 1 (STIM1), upon sensing the depletion of (Ca2+) from the endoplasmic reticulum (ER) store, organizes as puncta that trigger store-operated Ca2+ entry (SOCE) via plasmalemmal Ca2+-sel...
متن کاملStore-Operated Ca2+ Entry Plays a Role in HMGB1-Induced Vascular Endothelial Cell Hyperpermeability
AIMS Endothelial dysfunction, including increased endothelial permeability, is considered an early marker for atherosclerosis. High-mobility group box 1 protein (HMGB1) and extracellular Ca2+ entry, primarily mediated through store-operated Ca2+ entry (SOCE), are known to be involved in increasing endothelial permeability. The aim of this study was to clarify how HMGB1 could lead to endothelia ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology of the cell
دوره 19 5 شماره
صفحات -
تاریخ انتشار 2008